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Outline

1 Introduction to backward stochastic differential equations (BSDEs) and the
Kolmogorov backward equation (KBE)

2 Numerical schemes for BSDEs driven by Brownian motions

3 Numerical schemes for BSDEs driven by Lèvy jump processes
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Backward stochastic differential equations
driven by a Lèvy process

Backward stochastic differential equation:

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs

+

∫ t

0

∫
E

c(s,Xs−, e)µ̃(de, ds)

Yt = ξ +

∫ T

t

f(s,Xs, Ys, Zs,Γs)ds−
∫ T

t

ZsdWs

−
∫ T

t

∫
E

Us(e)µ̃(de, ds),

where E = Rd\{0}, Ws is a d-dimensional Brownian motion and µ̃(de, ds)
= µ(de, ds)− λ(de)ds is a compensated Poisson random measure.

The solution is (Xt, Yt, Zt, Ut) and Γt =
∫
E
Ut(e)η(e)λ(de).

The well-posedness of the BSDE has been proved in [Pardoux-Peng,1990] for
BSDEs driven by Brownian motion and in [Barles-Buckdahn-Pardoux, 1997] for
BSDEs with jumps.
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BSDEs and partial-integral differential equations (PIDEs)
stochastic representation of Kolmogorov backward equations (KBE)

We consider the viscosity solution u(t, x) ∈ C([0, T ]×Rd) of the following PIDE, i.e.,
∂u

∂t
(t, x) + L̃[u](t, x) + f(t, x, u, σ∇u,B[u]) = 0, for (t, x) ∈ [0, T )× Rd,

u(T, x) = ϕ(x), for x ∈ Rd,

where ϕ(x) is the terminal condition at the time t = T and the second-order

integral-differential operator L̃ is of the form

L̃[u](t, x) =

d∑
i=1

bi(t, x)
∂u

∂xi
(t, x) +

1

2

d∑
i,j=1

(σσ>)i,j(t, x)
∂2u

∂xi∂xj
(t, x)

+

∫
D

(
u(t, x+ c(t, x, e))− u(t, x)−

d∑
i=1

∂u

∂xi
(t, x)c(t, x, e)

)
λ(de),

and B is an integral operator defined as

B[u](t, x) =

∫
D

[
u(t, x+ c(t, x, e))− u(t, x)

]
η(e)λ(de).
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BSDEs and partial-integral differential equations (PIDEs)
stochastic representation of Kolmogorov backward equations

Under the condition that Xt = x with 0 ≤ t ≤ T , the conditional solution
(Xt,x

s , Y t,xs , Zt,xs , U t,xs ) for t ≤ s ≤ T satisfies

Xt,x
s = x+

∫ s

t

b(r,Xt,x
r )dr +

∫ s

t

σ(r,Xt,x
r )dWr +

∫ s

t

∫
E

c(r,Xr−, e)µ̃(de, dr),

Y t,xs = ϕ(Xt,x
T ) +

∫ T

s

f(r,Xt,x
r , Y t,xr , Zt,xr ,Γt,xr )dr −

∫ T

s

Zt,xr dWr

−
∫ T

s

∫
E

U t,xr (e)µ̃(de, dr).

Then, u(t, x) = Y t,xt , (t, x) ∈ [0, T ]×Rd is the unique viscosity solution of the PIDE
[PP91, BBP97], and the triple (Y t,xs , Zt,xs , U t,xs ) for s ≤ t ≤ T can be represented by

Y t,xs = u(s,Xt,x
s ),

Zt,xs = σ(s,Xt,x
s )∇u(s,Xt,x

s ),

U t,xs = u(s,Xt,x
s− + c(s−, Xt,x

s− , e))− u(s,Xt,x
s− ),

and Γt,xs is defined by Γt,xs = B[u](s,Xt,x
s ).
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Why we are interested in BSDEs?
Applications of BSDEs and KBE

Differences between forward and backward Kolmogorov equations

– Kolmogorov forward equation (KFE), i.e. Fokker-Plank equation: given a
distribution about the state Xt at time t, i.e. p(t, x), we want to know the
probability distribution of the state at a later time s > t.

– Kolmogorov backward equation (KBE): given a target function u(T, x), we
want to know, under the condition that Xt reaches (x, t) with t ≤ T , what
is the expectation of u(T,XT ), i.e. Ext [u(T,XT )|Xt = x].

– The KBE of divergence form corresponds to another type of BSDEs where
the forward process Xt is a Dirichlet type Markov process.

– For BSDEs driven by pure jump processes, the corresponding KFE and
KBE are of the same type.

Applications of BSDEs

– stochastic optimal control
– mathematical finance, e.g. option pricing
– solution of PDEs/PIDEs, e.g. hyperbolic conservation law, nonlocal

diffusion
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Numerical schemes for BSDEs driven by Brownian motion

Backward stochastic differential equation:
Xt = X0 +

∫ t

0

dWs,

Yt = ϕ(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs,

where the solution is the pair (Yt, Zt).

We do not need to discretize the forward SDE.

We need to generate two reference equations for solving Yt and Zt.

To overcome the low accuracy in discretizing the Itô integral, we propose to

– remove the Itô integral in the reference equations

– convert the Itô integral into a time integral in the reference equations
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Pre-processing of the BSDE

The reference equation for Yt: taking the conditional mathematical expectation
Extn [·] on both sides of the BSDE, we obtain

Ytn = Extn [Ytn+1 ] +

∫ tn+1

tn

Extn [f(s,Xs, Ys, Zs)] ds,

where the Itô integral is removed due to the fact that
∫ T
t
ZsdWs is a

martingale such that Extn [
∫ tn+1

tn
ZsdWs] = 0.

The reference equation for Zt: Multiply ∆Wtn+1 on both sides, take Extn [·] and
apply the Itô isometry formula, we obtain

0 = Extn [Ytn+1∆Wtn+1 ] +

∫ tn+1

tn

Extn [f(s,Xs, Ys, Zs)∆Ws] ds−
∫ tn+1

tn

Extn [Zs] ds,

where the Itô integral is converted by

Extn

[∫ tn+1

tn

ZsdWs∆Wtn+1

]
= Extn

[∫ tn+1

tn

ZsdWs

∫ tn+1

tn

1dWs

]
=

∫ tn+1

tn

Extn [Zs] ds
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Semi-discrete schemes
time discretization

θ-scheme [ZCP06, ZLZ12]



Y n = Extn
[
Y n+1

]
+ (1− θ)∆tExtn

[
f(tn+1, X

n+1, Y n+1, Zn+1)
]

+ θ∆tf
(
tn, X

n, Y n, Zn
)
,

θ∆t Zn = Extn
[
Y n+1∆Wtn+1

]
+ (1− θ)∆tExtn

[
Zn+1

]
+ (1− θ)∆tExtn

[
f(tn+1, X

n+1, Y n+1, Zn+1)∆Wtn+1

]
,

where θ = 0: forward Euler scheme, θ = 1: backward Euler scheme and θ = 1
2

:
Crank-Nicolson scheme.

Other time-stepping schemes

– linear multi-step scheme [ZZJ10]

– generalized θ-scheme [ZLZ12]

– second-order scheme for coupled BSDEs [ZZJ14]
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A fully-discrete scheme
Estimation of high-dimensional conditional expectations

At each point (tn, x), we need to estimate

Extn [Y n+1] =
1

(2π∆t)d/2

∫
Rd

Y n+1(v) exp

[
− (v − x)>(v − x)

2∆t

]
dv,

and Extn [fn+1],Extn [Y n+1∆Wtn+1 ],Extn [fn+1∆Wtn+1 ],Extn [Zn+1].

Sparse-grid quadrature rule based on Gauss-Hermite points can be directly used
to discretize the conditional expectations, i.e.,

Extn [Y n+1] ≈ Êxtn [Y n+1] =

Q∑
i=1

ωiY
n+1(x+

√
2π∆tai),

where {wi}Qi=1, {ai}Qi=1 are weights and the sparse grid abscissa, respectively.
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A fully-discrete scheme
high-dimensional Interpolation

Instead of discretizing differential operators, at each time-space point (tn, x),
we need to compute a set of conditional expectations.

Space Space

Time Time

(left) The ideal case: the quadrature points are on the mesh ; (right) Gauss-Hermite

case: most quadrature points are not on the mesh

To avoid exponential growth of the total number of quadrature points, we
construct an interpolant of the solutions Y n+1, Zn+1 at each time level on a
pre-determine mesh, and interpolate at all quadrature points.
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A fully-discrete scheme

At each sparse-grid point xi at the time tn, the solution (Y ni , Z
n
i ) is obtained by

Y ni = Êxitn
[
Ŷ n+1

]
+ (1− θ)∆t Êxitn

[
f(tn+1, X

n+1, Ŷ n+1, Ẑn+1)
]

+ θ∆tf
(
tn, X

n
i , Y

n
i , Z

n
i

)
,

θ∆t Zni = Êxitn
[
Ŷ n+1∆Wtn+1

]
+ (1− θ)∆t Êxitn

[
Ẑn+1

]
+ (1− θ)∆t Êxitn

[
f(tn+1, X

n+1, Ŷ n+1, Ẑn+1)∆Wtn+1

]
,

where Êxitn [·] denotes the sparse Gauss-Hermite quadrature rule and Ŷ n+1, Ẑn+1 are
sparse polynomial interpolants.

The multi-variate Gaussian distribution is defined on the unbounded domain Rd
but the quadrature rule is always on a bounded domain, such that the sparse
interpolation is only needed on the bounded domain.

Possible choice of sparse interpolation: Clanshaw-Curtis rule [,NTW08], Leja
[ddd], local hierarchal basis [BG04], wavelet basis [BG04,GWZ14]
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The advantages of solving BSDEs instead of PDEs

No linear system is involved when using implicit time-stepping scheme. The
scheme for solving Zt is always explicit.

– If f(t,Xt, Yt, Zt) is linear with respect to Yt, i.e. linear PDEs, then the
scheme for Yt is also explicit.

– If f(t,Xt, Yt, Zt) is nonlinear with respect to Yt, then a nonlinear equation
has to be solved at each sparse grid point.

The PDE can be solved independently at different sparse grid points on each
time level, which makes it straightforward to incorporate parallelization and
adaptivity.

The stability of our scheme follows classic stability properties of the
time-stepping schemes for deterministic ODEs.

Challenge: it is generally difficult to construct high-order schemes for
initial-boundary value problems because of the involved stopping time.
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Numerical example 1
A multi-dimensional BSDE

We consider a d-dimensional BSDE with d from 2 to 4. Let Wt =
(
W 1
t , · · · ,W d

t

)>
be a d-dimensional Brownian motion. W i

t (i = 1, · · · , d) are d independent standard
one-dimensional Brownian motions. The BSDE of interest is

−dYt =

[
(d− 1)Yt + 2

d∑
i=1

W i
tZ

i
t

]
dt− ZtdWt,

YT = exp

[
T −

d∑
i=1

(
W i
T

)2]
,

where Zt = (Z1
t , · · · , Zdt ). The analytical solution of (14) is given by

Yt = exp

[
t−

d∑
i=1

(W i
t )2
]
,

Zit = −2W i
t exp

[
t−

d∑
i=1

(W i
t )2
]
, i = 1, · · · , d.
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Numerical example 1
A multi-dimensional BSDE

The errors of the approximations to Yt (left) and Zt (right) with respect to the number of

sparse grid points. Linear hierarchal polynomial basis [BG04] is used.
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Numerical example 2
European call option in the Black-Scholes model

Denote pt and St = (S1
t , . . . , S

d
t ) as the bond price and the prices of d independent

stocks, respectively. Assume that pt and St satisfy{
dpt = rtptdt,

dSit = bitS
i
tdt+ σitS

i
tdW

i
t , i = 1, . . . , d.

An investor with total wealth yt at time t puts πit money to buy the i-th stock and
uses yt −

∑d
i=1 π

i
t to buy the bond. Then the processes yt and πit (i = 1, . . . , d)

satisfy the following BSDE [KPQ97]:

− dyt = −

[
rtyt +

d∑
i=1

bit − rt + qit
σit

zit

]
dt−

d∑
i=1

zitdW
i
t ,

where zt = (z1t , . . . , z
d
t ) = (σ1

t π
1
t , . . . , σ

d
t π

d
t ) and the terminal condition for

European call option is

yT = max

{
d∏
i=1

(Sit)
αi −K, 0

}
,

where αi > 0,
∑d
i=1 αi = 1, ST is the solution of St at the mature time T and K is

the strike price.
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BSDEs driven by Lèvy jump processes
motivated by nonlocal diffusion problems

Consider the following BSDE driven by a compound Poisson process, i.e.,
Xt = X0 +

∫ t

0

∫
D

e µ(de, ds),

Yt = ϕ(XT ) +

∫ T

t

f(s,Xs, Ys)ds−
∫ T

t

∫
D

Us(e) µ̃(de, ds).

It corresponds to the following nonlocal diffusion equation
∂u

∂t
(t, x)− Lu(t, x) = g(t, x, u) for (t, x) ∈ (0, T ]× Rd,

u(0, x) = u0(x), for x ∈ Rd,

where the diffusion operator L is defined by

Lu =

∫
D

(
u(t, x+ e)− u(t, x)

)
γ(e) de, ∀(t, x) ∈ [0, T ]× Rd,

and g(T − t, x, u) = f(t, x, u), ϕ(x) = u0(x).
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A semi-discrete scheme for Yt
time discretization

Based on a time partition T =
{

0 = t0 < · · · < tN = T
}

, since the process∫ t
tn

∫
D
Us(e)µ̃(de, ds) for t > tn is a martingale, we have

Ytn = Extn [Ytn+1 ] +

∫ tn+1

tn

Extn [f(s,Xs, Ys)]ds.

The semi-discrete scheme is as follows: given random variable YN = YtN = ϕ(XT )
being the terminal condition, for n = N − 1, . . . , 1, 0, the solution Ytn at Xn = x is
approximated by Yn satisfying

Xn+1 = Xn +

∫
D

e µ(de,∆t),

Yn = Extn
[
Yn+1

]
+ (1− θ)∆tnExtn

[
f(tn+1, Xn+1, Yn+1)

]
+ θ∆tnf(tn, Xn, Yn),

where 0 ≤ θ ≤ 1.

It looks very similar to the case with Brownian motions. However, the
conditional expectation Extn [·] is different because Xt is a jump process.
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Compound Poisson processes

A standard Poisson process, denoted by Nt, is a stochastic process with jumps
of size +1 only. For fixed 0 ≤ s ≤ t, we have

P(Nt −Ns = k) = e−λ(t−s)
(λ(t− s))k

k!

A compound Poisson process, denoted by Xt, is a generalization of standard
Poisson process by introducing random jump size, i.e.,

Xt =

Nt∑
k=1

Zk,

where {Zk}k≥1 are i.i.d. sequence of square-integrable random variables with
probability distribution ρ(Z).

The compensated Poisson random measure µ̃(de, dt) of Xt can be written as

µ̃(de, dt) = µ(de, dt)− λ(de) = µ(de, dt)− λρ(e)de,

where λ =
∫
E
λ(de) <∞ is the jump intensity.
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Estimation of Extn [·]

When the BSDE is driven by a compound Poisson process Xt, then we have

Exitn
[
Yn+1

]
=
∞∑
m=0

P
{
Ntn+1 −Ntn = m

}
E
[
Yn+1

(
xi +

m∑
k=1

ek

)]

=

∞∑
m=0

exp(−λ∆tn)
(λ∆tn)m

m!
E
[
Yn+1

(
xi +

m∑
k=1

ek

)]

= exp(−λ∆tn) Yn+1(xi) +

∞∑
m=1

exp(−λ∆tn)
(λ∆tn)m

m!

×
∫
D

· · ·
∫
D

Yn+1

(
xi +

m∑
k=1

ek

)( m∏
k=1

ρ(ek)

)
de1 · · · dem.

When retaining the first My jumps, we have the following estimation

Êxitn,My

[
Yn+1

]
= exp(−λ∆t) Yn+1(xi)

+

My∑
m=1

exp(−λ∆t)
(λ∆t)m

m!

Qm∑
q=1

wmq Yn+1(xi + |amq |),
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A fully-discrete scheme
Error estimate

In one-dimensional case, the fully-discrete scheme is given by
Xn+1 = xi +

∫
D

e µ(de,∆t),

Y in,p = Êxitn,My
[Yn+1,p] + (1− θ)∆tnÊxitn,Mf

[f(tn+1, Xn+1, Yn+1,p)]

+ θ∆tnf
(
tn, Xn, Y

i
n,p

)
,

where Yn+1,p is constructed by p-th order Lagrange interpolation.

Theorem [ZZWG14]

Let Ytn and Y in,p for n = 0, 1, . . . , N , i ∈ Z be the exact solution of the BSDE and
the fully-discrete solution with θ = 1

2
, respectively. Then, the error ein = Y xitn − Y

i
n,p

can be bounded by

max
i∈Z
|ein| ≤ C

[
(∆t)2 + (λ∆t)My + (λ∆t)Mf+1 +Q−r + (∆x)p+1

]
,

where the constant C only depends on the terminal time T , the jump intensity λ,
the upper bounds of f and ϕ and their derivatives.
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Numerical example 3
symmetric jump kernel

We consider the following nonlocal diffusion problem in [0, T ]
∂u

∂t
− 1

δ3

∫ δ

−δ

(
u(t, x+ e)− u(t, x)

)
de = g(t, x), t > 0,

u(0, x) = ϕ(x),

where δ > 0 and the symmetric kernel γ(e) is defined as

γ(e) =


1

δ3
, for e ∈ [−δ, δ],

0, for e /∈ [−δ, δ].

We choose the exact solution to be

u(t, x) = (−x3 + x2) exp
(
− t

10

)
,

therefore the forcing term g is given by

g(t, x) = −u(t, x)

10
+
(

2x− 2

3

)
exp

(
− t

10

)
.
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Time discretization error

Errors and convergence rates with respect to ∆t where T = 1, δ = 1, Nx = 65, p = 3

‖Yt0 − Y0,p‖∞
N = 4 N = 8 N = 16 N = 32 N = 64 CR

θ = 0, My = 0, Mf = 0 1.932E-1 1.978E-1 2.000E-1 2.012E-1 2.017E-1 -0.015

θ = 0, My = 1, Mf = 0 7.958E-2 3.435E-2 1.572E-2 7.487E-3 3.649E-3 1.109

θ = 0, My = 2, Mf = 1 3.673E-2 1.849E-2 9.279E-3 4.675E-3 2.326E-3 0.995

θ = 1, My = 0, Mf = 0 2.111E-1 2.067E-1 2.045E-1 2.034E-1 2.028E-1 0.014

θ = 1, My = 1, Mf = 0 4.891E-2 2.581E-2 1.328E-2 6.736E-3 3.393E-3 0.964

θ = 1, My = 2, Mf = 1 6.170E-2 3.007E-2 1.468E-2 7.231E-3 3.585E-3 1.027

θ = 1
2 , My = 0, Mf = 0 2.030E-1 2.025E-1 2.023E-1 2.023E-1 2.023E-1 0.001

θ = 1
2 , My = 1, Mf = 0 2.623E-2 1.326E-2 6.666E-3 3.342E-3 1.674E-3 0.993

θ = 1
2 , My = 2, Mf = 1 3.207E-3 8.258E-4 2.094E-4 5.271E-5 1.322E-5 1.981

θ = 1
2 , My = 3, Mf = 2 3.330E-3 8.632E-4 2.196E-4 5.538E-5 1.391E-5 1.977
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Numerical example 4
non-symmetric jump kernel and discontinuous solution

We consider the following nonlocal diffusion problem in [0, T ],
∂u

∂t
−
∫ 2δ

−δ

[
u(t, x+ e)− u(t, x)

]
de = g(t, x), t > 0,

u(0, x) = ϕ(x),

where δ > 0 and an non-symmetric kernel γ(e) is defined as

γ(e) =

{
1, if e ∈ [−δ, 2δ],
0, if e /∈ [−δ, 2δ].

We choose the exact solution to be

u(t, x) =


x sin(t), if x <

1

2
,

x2 sin(t), if x ≥ 1

2
,

and g can be computed accordingly.
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Numerical example 4
non-symmetric jump kernel and discontinuous solution

Errors and convergence rates with respect to ∆x where p = 1, T = 0.5, θ = 1
2

, N = 512.

δ = 1 δ = 0.1

∆x ‖Yt0
− Y0,p‖L2 ‖Yt0

− Y0,p‖L∞ ‖Yt0
− Y0,p‖L2 ‖Yt0

− Y0,p‖L∞
2−3 3.001E-02 1.323E-01 2.503E-02 1.215E-01

2−4 2.287E-02 1.317E-01 1.751E-02 1.207E-01

2−5 1.467E-02 1.257E-01 1.231E-02 1.201E-01

2−6 1.107E-02 1.254E-01 8.676E-03 1.197E-01

2−7 7.045E-03 1.221E-01 6.126E-03 1.192E-01

CR 0.523 0.030 0.507 0.007
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Numerical example 4
non-symmetric jump kernel and discontinuous solution

(a) The surface of u(t, x) in [0, 0.5] × [0, 1]; (right) The exact solution u(0.5, x) (solid line)

and its approximation (dashed line) using 33 grid points (red dots).
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Numerical example 4
non-symmetric jump kernel and discontinuous solution

(a) Convergence with respect to number of spatial grid points using uniform and adaptive

grids, respectively. (b) Convergence with respect to ∆t for various tolerances of adaptive

spatial grid.
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Concluding remarks

Backward SDE is advantageous for numerical solution of a class of
partial-integral differential equations, especially when integral operator is
involved.

Nonlinear system solution is involved for implicit time-stepping schemes

It is easy to incorporate adaptive approximation and parallel implementation

The sparse-grid method is used for approximating conditional expectation and
interpolation of dimension M , where M is

– for pure Brownian motion, M = d

– for a general continuous diffusion processes, M = d for first-order schemes,
M = 2d for second-order schemes

– for pure jump process, M = d× number of jumps

For future works, we will extend our approach to

– BSDEs driven by infinite activity Lèvy processes (λ =∞) which cannot be
represented by compound Poisson processes, so new sparse-grid quadrature
rules are needed.

– PIDEs with discontinuous solutions where the discontinuity location moves
as time evolves.
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